Module Title	
	Digital Logic Design
Course Title	BEng (Hons) Electrical and Electronic Engineering/Electrical Power
	Engineering/Electronic and Computer Systems Engineering
Cohool	
School	□ ASC □ ACI □ BEA □ BUS ⋈ ENG □ HSC □ LSS
Division	PEng Floatrical and Floatrania Engineering/Floatrical Dawer
	BEng Electrical and Electronic Engineering/Electrical Power Engineering/Electronic and Computer Engineering
	Engineering/Electronic and Computer Engineering
Parent Course	
(if applicable)	
Level	
	Level 4
Module Code (showing	EEE_4_DLD
level)	
JACS Code (completed	
by the QA)	
Credit Value	20 credit points
Ctudent Ctudy House	Contact bours, 50, 10 bours recorded online material (FT and DT)
Student Study Hours	Contact hours: 50, 12 hours recorded online material (FT and PT)
	Student managed learning hours: 150
	Student managed learning nodis. 100
	Placement hours:
Pre-requisite Learning	None
_	
Co-requisites	None
Excluded combinations	None
Excluded combinations	None
Module co-ordinator	TBC
Short Description	
(max. 100 words)	The module covers the fundamental theory for the design of and the practical
	uses of digital electronics in the two design domains of combinational logic
	design and sequential logic design. The process of developing digital logic
	design is modelled using Hardware Description Languages (HDL). The
	module studies hardware devices to build circuits for digital logic designs and
	tools to support the design and analysis of those circuits; these include
	standard logic gates and Field Programmable Gate Arrays (FPGA). The
	module covers common design blocks such as adders, encoders,
	comparators, data selectors, flip-flops, counters, registers. The module shows
	the design and implementation of full digital systems typically based around
	finite state machines from description in HDL to implementation using FPGA
	technology.

Aims Learn and develop the theory and methodologies of combinational and sequential digital logic so that students gain the ability to analyse their operation as well as be able to design basic combinational and sequential Learn and develop the ability to describe combinational and sequential logic designs using Hardware Description Languages Develop practical skills for students to employ lab equipment to build and test digital circuits Develop knowledge and skills to employ standard workshop instruments for monitoring the operation of digital circuits Develop written communication skills (through digital notebooks) to analyse and compare laboratory experiments with annotations of the design, analysis and testing of digital circuits **Learning Outcomes** Knowledge and Understanding: (4 to 6 outcomes) Explain and discuss the underlying principles and practices of the design of digital logic for the building of combinational and sequential circuits from Boolean equations, through logic minimisation up to analysis and synthesis of sequential designs (A1, A2) [AHEP3 SM1i] Describe the modelling of digital logic design using Hardware Description Languages (A1, A3) [AHEP3 D4i, P4i] Intellectual Skills: Understand the mapping of logic concepts to digital components such as gates, latches, flip-flops for building operational circuits (B1, B2) [AHEP3 EA3i] Apply knowledge of Hardware Description Languages to model digital logic designs to build digital circuits in FPGA technology (B3, B4) [AHEP3 P2i, G1] **Practical Skills:** Gain the ability to build circuits on breadboard from schematics and make them operational. Use commercial tools to create projects to deploy digital logic design in FPGA technology (C2, C3) [AHEP3 P3i] Develop fault-find abilities of digital circuits using logic probes and test instruments (C2, C7) [AHEP3 EA2i, P1i] **Employability** The module develops the understanding and application of Hardware Description Languages (HDLs) such as Verilog to model and design digital circuits which are essential skills in roles such as "Digital Design Engineer", "Hardware Design Engineer" or "RTL Design Engineer" used widely in the industry. Companies such as ARM, Mobile phone manufacturers, GE, Phillips, Cirrus Logic continuously advertise these roles. **Teaching and learning** Contact hours includes the following: pattern (please click on the checkboxes as appropriate) √ Lectures ☐ Group Work: □ Seminars □ Laboratory □ Practical

Indiantina and and	
Indicative content	Number Systems and Conversions, Boolean Algebra and Logic Equations, Logic Minimisation, Combinational Logic Blocks, Flip-Flops, Registers, Finite State Machines. All this content is expressed in HDL and tested in FPGA devices.
Assessment method (Please give details – of components,	Formative assessment: Short-training Moodle Quizzes, Online QAs, use of logic simulators.
weightings, sequence of components, final component)	Summative assessment: CW: 50% (A1, A3, C2, C3, C7). Composed of two sub-components: SC1_50 and SC2_50
	Exam: 2 hours exam 50% (A1, A2, A3, B1, B3). Overall, the assessment components are: CW_50 (SC1_50 + SC2_50) and EX_50
Mode of resit	Formative assessment: Tutorials online
assessment (if	Summative assessment:
applicable)	CW: 5 hour-long session in lab
	Exam: 2 hours exam (50%)
Indicative Sources (Reading lists)	Core materials: 1. Fundamentals of Logic Design: Enhanced Edition 7 th Edition; Charles H. Roth Jr., Larry Kinney and Eugene B. John. Cengage Learning, 2020. 2. Digital System Design with SystemVerilog; Mark Zwolinski. Prentice Hall, 2009
	Optional reading: 1. FSM-based Digital Design using Verilog HDL; Peter Minns and Ian Elliot. Wiley 2008. 2. A Verilog HDL Synthesis: A Practical Primer; J. Bhasker. Star Galaxy Publishing, 1998
Other Learning Resources	VLE for this module, Quartus Software from Intel, IcarusVerilog, LogicFriday, Espresso, https://www.digitalelectronicsdeeds.com/; https://www.edaplayground.com/